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AN ANALYTIC METHOD FOR CONVERGENCE ACCELERATION 
OF CERTAIN HYPERGEOMETRIC SERIES 

STANISLAW LEWANOWICZ AND STEFAN PASZKOWSKI 

ABSTRACT. A method is presented for convergence acceleration of the gener- 
alized hypergeometric series 3F2 with the argument ? 1, using analytic prop- 
erties of their terms. Iterated transformation of the series is performed ana- 
lytically, which results in obtaining new fast converging expansions for some 
special functions and mathematical constants. 

1. INTRODUCTION 

We consider convergence acceleration of some generalized hypergeometric 
series of the type 

(1.1) 3F2(a, b, c; d, e; e) _ ( 

where e = ?1, and (a)n := a(a + 1) * * (ca + n - 1) is Pochhammer's sym- 
bol. The function 3F2(a, b, c; d, e; 1) is one of the fundamental functions 
of applied mathematics. For special values of its parameters this function can 
be represented as a ratio of finite products of Gamma function evaluations. In 
the most general formulae of this type, due to Dixon, Whipple and Watson, 
two of the parameters a, b, c, d, e are linear combinations of the others [4, 
vol. 1, ?4.4, (5)-(7); 8, vol. 1, ? 3.13, (6)-(8)]. Wimp [14] has shown that these 
formulae cannot be generalized to the case where four parameters are not in- 
terrelated. (Recently, Zeilberger [16] gave a short proof of Wimp's theorem.) 
As for the case of e = -1, the most general results are: Kummer's formula 
for 2F1 (a, b; 1 + a - b; -1) ([4, vol. 1, ? 2.8, (47)]) and Bailey's formula for 
3F2(a, b, 1 + 2a; I +a-b, 1a; -1) (cf. [4, vol. 1,?4.5,(4)]). 2 2 -)(f 4 o.l?.,()) 

Let us recall that many elementary functions (tan, tanh, cot, coth, csc, 
csc2, ... ), as well as some special functions ( V/, V/', Beta, ... ) and mathe- 
matical constants ( 7r , 2, Catalan's constant G, the lemniscate constant A, 
log 2, ... ) can be expressed in terms of the series of type (1.1). 

For almost any set of the parameters the series (1.1) is an unsatisfactory way 
of computing 3F2(e) . Wimp [15, ? 9.1] (see also [6]) has proposed an algorithm 
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for computing 3F2(a, b, c; d, e; 1) numerically, which is based on a three- 
term recurrence relation for 3F2(a, b, c; d + m, e; 1) (m = 0, 1, ... ). In 
this paper we propose an analytic method for the acceleration of convergence 
of certain series of type (1.1). The term "analytic" means that 

10 we use explicitly not only values of partial sums of the series (1.1) but 
also analytic properties of its terms, 

20 we obtain an analytic form for the transformed series. 
The effect of convergence acceleration is remarkable. The transformed series 

Zdn is such that dn+1 /dn -- A, where AI = 9, A-1 =-8 
To give the main idea of the proposed approach, let us consider a general 

series 
00 

(1.2) Z8nan (e=?1) 
n=O 

with the partial sums 
n-I 

nO :=Eaja (n =0, 1, ... ) 
j=O 

The series (1.2) is identical to 

(1.3) S0) + Z nA 
n=O 

(throughout the paper the forward difference operator A always acts on the 
subscript n). 

A vast class of methods of accelerating the convergence of the series (1.2) 
can be considered as recurrent transformation of the sequence {S?) } of partial 
sums of (1.2) to certain suitably chosen sequences {snk) } (k = 1, 2, ... ), i.e., 
transformation of (1.3) to 

00 

(1.4) 5(k) + Z S(k) 

n=O 

according to the formula 

(1.5) snk) snkl) + Ck I)Asnkl) (n = 0, 1, ..., k = 1, 2, ...). 

The parameters Cnkl) should be such that for any k > 0, Cnk-l)skl) t0, 

when n -* oo. In this case, all the series (1.4) and the series (1.2) have the 
same sum which we denote by s. 

Of course, transforming the series (1.2) only makes sense when the rate of 
convergence of the sequence {nsk)} to 0 grows with k . Notice that the exact 
value of s can be obtained as a result of performing the first transformation 
{s(?)} I {s')} . Indeed, if we define 

(1.6) Cn )= () = an Sejai (n 1 0 

n ~~j=n 

then s(l) = s for every n. A useful closed-form expression for the optimum 
factors Cn?) can be given for trivial series only. In general, we are looking for 
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factors which accelerate the convergence of the series. For this purpose, we may 
use the following relation implied by (1.6): 

(1.7) -1 = =an+ (n=0, 1,...). 
Cn+ 1 

Let us assume that 

(1.8) an +l i +2 + p++ (n xo) 
an 

(this is the case for the series (1.1)). By virtue of a theorem given by Sidi (see 
[1 1, Theorem 6. 1], or [12, Theorem 2. 1]), CQ0) has an asymptotic expansion of 
the form 

(1.9) C?) -ntZckn -k (n oo) 
k=O 

with T = (1 + E)/2. 
Methods presented in this paper are based on the following facts: 
(i) Coefficients of the asymptotic expansion (1.9) of the optimum accelerating 

factor Cn?) can be effectively calculated using (1.2) and (1.7). 
(ii) With methods of Pade approximation applied to this expansion, good 

rational approximants to this factor can be effectively constructed. (In the sim- 
plest case these approximants are identical to those proposed by Knopp [7, 
?35A, (153)].) 

(iii) For some series (1.2), similar factors Cnk) for k > 0 can be found 
provided the approximate expressions for Cd0) are sufficiently simple. This 
gives a two-dimensional table S of approximants s) of the sum of the series. 

(iv) To any path in the table S there corresponds a series E dn, where 
do, Adn are entries lying on the path, and analytic expressions for dn are 
known. It is possible to find a path for which the corresponding series converges 
to s significantly faster than any series (1.4). 

In this paper we show that the process (i)-(iv) can be actually per- 
formed for the series 3F2(1 b, c; d, e; 1) (see Theorem 2.2 in ?2) and 
3F2(1, b, c; d, e; -1) with b + d = c + e (see Theorem 3.2 in ?3). Some 
important particular cases are considered in the numerous corollaries and ex- 
amples, in ?2 for e = 1, and in ?3 for E = -1. Obviously, the analytic 
convergence acceleration based on Theorems 2.2 and 3.2 can compete only in a 
certain limited class of series with purely numerical methods such as Brezinski's 
9-algorithm, e-algorithm, or Levin's transforms (see [3, ?? 2.3, 2.7, 2.9]). 

As a by-product, some identities for contiguous series (1.1) with 6 = 1 are 
obtained (see Theorem 2.3). 

2. SERIES FOR 6 = 1 

Assuming that e = 1, we consider first how the identity (1.7), i.e., 

(2.1) Cn - I= an Cn+ 1 

(for simplicity, we drop the superscript in the symbols Cn?), C,( ), can be n+1 
exploited. A general closed-form expression for Cn , applicable to any series 
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(1.2) for E = 1, remains unknown. In the hypergeometric case (1.1) we have 

=F(1, n+a, n+b, n+C 
Cn = 4F3 n+ 1, n+d, n+e 

which does not seem to suggest any practical way of computing this factor. 
Let Cn satisfy (2.1), and let (1.8) hold. Then a theorem due to Sidi (see [11, 

Theorem 6.1], or [12, Theorem 2.11) applies, and we obtain a Poincare-type 
asymptotic expansion 

00 

(2.2) Cn E ck+ln k. 
k=-1 

The coefficients Ck can be computed relatively easily by use of the linear relation 
(2.1). Thereupon, we can introduce the formal power series 

00 

(2.3) F(x) Zckxk. 
k=O 

It is known that Pade approximation often gives good rational approximants 
to such a series, even if it is divergent. As we have Cn = nF(n-1), any Pade 
approximant [U / m]F(x) gives an approximate value C?): n[l / m]F(nn) of 
the exact accelerating factor Cn. It can be checked that the equation [l/m]F(x)- 
F(x ) - O(xl+m+1) implies the relation As(1 ') As,?)O(n-(+m+1)), showing how 
much faster the transformed series (1.4) for k = 1 converges compared with 
the convergence of the original series (1.3). The most natural are perhaps ap- 
proximants of the type [m + 1 / m], as this is the only case where Cn?) defined 
above is a rational function with respect to n, which has all the coefficients of 
the numerator and the denominator polynomials different from zero, in general. 

The simplest transformation of the series (1.3) is based on using the approx- 
imant [1 / OIF to the auxiliary series (2.3). In this case, we use the following 

Lemma 2.1. Let 
n-I 

sO 
~- 

aj 
(2.4) n =O 

SM() := S(O) + (fin + y)As(?) 

where 

(2.5) -Pl +P2 

and Pl, P2 are the coefficients of the expansion (1.8). (We assume that Pi # 
0, -1). Then 

Asn )= As ()O(n 2). 

Proof. As 

A(1) 
- 

A(O) + [fi(n + 1) + Y7As,1 - (fin + Y)Asn0 
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we have, in view of (1.8), 

As(') =As(?) (fin + p + ) 1:) -An-y +1) 

&As()[(n +f , + y)(i +pin +p 2ir2+ )-f,n-'y+ 1]. 
For ,B, y given in (2.5) the expression in brackets is equal to 62n-2 + c53n-3 + 
*..= O(-2). a 

Remark 1. Knopp [7, ?35A, (153)] observed that for an = 1/(n + 1)2 it is 
useful to apply the Kummer transformation, i.e., to replace (1.2) (with e = 1) 
by the series 

qb+ (l-q ?.)an (b = bn q := lim b) 
n=O a n=On-Mb 

taking bn = (n + y)an - (n + y + 1)an+l with a suitably chosen y. The above 
lemma generalizes this observation in a substantial way. 

Remark 2. In general, the transformation (2.4) may be iterated. Indeed, 

&0()l tV( l~ 2~ 62 (n + j)-2 + (53(n + j)-3 +,. n+1 ,-,(I pi n- 1 
P2n 

52n2 + c53n-3+ . 

1+ pin- + p2n-2+*** 

Now, the sequence {sn2} can be constructed in an analogous way, provided 
p o ?, -1. 

The following theorem shows that the transformation (2.4) can be effectively 
iterated for a certain four-parameter family of hypergeometric series. 

Theorem 2.2. The series 
(2.6) 

3F (1$b, c i'\ (b) n(c)~ (d, eA $0, -i, -2, ... , ~R(t) > 1), 
( d , e ,) L(d)n(e) 

where t := d + e - b - c, can be transformed according to the following formulae 
applied for n = O, 1, ... : 

(2.7) j= 0 ()j(e)j 

(2.8) Snk) Snk4) + (f3kn + Yk)A n (k = 1, 2, ***), 

where 
(2.9) 

1 b+c bc- (k+d - 1)(k+e- 1) 
2k +t-3' Yk + = 2k+t-3 + (2k+t-3)2 

(2.10) 

ASk) = (d - b)k(d - C)k(e - b)k(e - c)k(b)n(C)n (k = 0 1, 
Thequn t iie A s()(t - l)2k(d)+k(e)(n+k 

The quantities As?(k are such that' As (k) = Q(n-2k-t) (n --+ oc). 
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If d - e = b - c, the formula (2.8) simplifies to 

(k) .(k-1) 2n + 3k-c + d + 2e-5 (k-1) Sn *-Sn + 2(2k+ t-- 3) n 

Proof. Let k = 0. Formula (2.10) then agrees with (2.7). Assuming that k > 0, 
we obtain from (2.8) 

(211 S(k) AS( )IA(-1 AS (k-1)g,k-l) (2.11) ns = [flk(n +1)+ yk]snk+1 )-(flkn +Yk-1 n 1= snk )gn(- 

where 

gn(k-l) [f8k(n+1) +yk] -(kn + Yk - 1), 

a(k-i).= ASRI- = I + p n-1 + p2 n +.*, 

According to (2.5) (Lemma 2.1), let 

(2.12) Ilk = pk i) + 1 Yk = ()+(k) 
(k - 1) (P(k 

- I ~~~~)) 

Then gnk- l) = O(n2). Note that 
(k-i1) 

o(k) =,(k -1).9 n+ I 
~~" -~ (k-1)~ 

gn 

It can be shown by induction with respect to k that 

,r(k) = (n + b)(n + c) 
(n+k+d)(n+k+e) 

(2.13)4k) = -2k-, pk) (2k+t)(2k+d +e)-(k+d)(k+e)+bc, 
2 (k + d - b)(k + d - c)(k + e - b)(k + e - c) 

\*J5l - (2k+t- 1)2(n+k+d)(n+k+e) 
Now, (2.9) follows from (2.12) and (2.13), while (2.10) follows from (2.1 1), 

(2.14) and the equation As(?) - (b)n(c)n/[(d)n(e)n]. If d - e = b - c, then 
t = 2(e - c), bc - (k + d - 1)(k + e - 1) = 1(2k + t - 2)(k + c + d - 1), and 
(2.9) implies the last formula given in the theorem for Snk). O 

The following remarks should be added: 

Remark 1. If at least one of the differences d - b, d - c, e - b, e - c is a 
negative integer, then all ASn vanish for a certain k, so that the number s5k) 
is the sum of the series (2.6). Thus, the procedure described in Theorem 2.2 
detects some cases where the sum is a rational expression given in terms of the 
parameters. 

Remark 2. Any Saalschutzian series 3F2(a, b, c; d, e; 1), i.e., such that d + 
e = a + b + c + 1 , reduces to the form (2.6). This result follows from the identity 
(see [8, vol. 1, ? 3.13, (10)]) 

Fa, b, c I`(d)I(e)I(t) F t, d -a, e 1-a 
3 2 Vd, e I 3 F(a)F(t+b)(t+c) 2 t +b, t+c ) 

where t:=d+e-a-b-c, R(t)>O, R(a)>O. 
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Obviously, the same remark applies to the series 3F2(a, b, c; a + 1, e; 1), 
where AR(e - b - c) > O. 

Remark 3. Some series of the type 4F3( 1) can be transformed to 3F2( 1) of one 
of the above forms. In case of the Saalschutzian 4F3(1, b, c, d; 2, f, g; 1) 
(f + g = b + c + d), it suffices to apply the identity (see [9, ? 5.2, (15)]) 

IF ( 1 b, c, d 1 4F3(2 f 

(b -f1,( )(g - 1) [ F(b 1, g'_d1 g1) 1 

The series 4F3(a, b, c, d; e, c +1, d+1; 1) can be written as (see [9, ? 5.2, 
(14)]) 

4F3 (ab1, Ke ,c + i, d + 1 

_ d(c- e) a, b, c | _c(d -e) F b a,b,d | 1 
(c-d)e3 2e+1,c+1 ) (c-d)e3 2 e+1,d+1 ) 

Now, it should be emphasized that the transformations of partial sums of 
the series (2.6), which are given in Theorem 2.2, are based on the use of some 
identities for hypergeometric functions of unit argument. Indeed, we have 

00 00 
s(k-1) + ZAS-k-1) = S(k) + ZAS(k) 

n=O n=O 

for k > 0. Hence it follows from (2.8) for n = 0 that 

(2.15)1 ZAS(kl ) _ (k 1 ]AS(k) (2.15) (ASk-1) n Yk + 
AS(kl ) AS(k) n 

0 n=0 0 0 n=0 

By virtue of (2.9), 

~S(k) 
n__1 - (n + b)(n + c) 

AS(k) (n+k+d)(n+k+e)' 
Ok) 

- 

(k+d-b- 1)(k+d-c- 1)(k+e-b- 1)(k+e-c- 1) 
0 A(k-li) -(2k + t- 3)2(k +d - 1)(k +e - 1) 

thus (2.15) implies the identity 

(2.16) 3F2(kdI/cif=7 11k+wk3F2(kdke ) 
(k + d -1 k + e - 1. = k + d) F (k dk l 1) 

with 
(k+d -b- 1)(k+d -c- 1)(k+e-b- 1)(k+e-c- 1) 

(Ok = (2k + t - 3)2(k +d - 1)(k +e - 1) 

The above identity may be obtained also from some relations which hold for 
contiguous hypergeometric functions. 
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Theorem 2.3. The following identities hold: 

W 3F2(dl 3 d - 1, e - |) 

(2.17) =(d -a)(e - a)z3F2(a d-,b, 1 

+ {w + abc(t - 1) - z[(d - a)(e - a) - bc]} 3F2 (ad e I) 

where t:=d+e-a-b-c, w:=(t-2)2(d -1)(e- 1), z:=(t-2)(d+e-2) 
-(d- 1)(e- 1)+ab+ac+bc, and 

(d+e - b-c- 1)2de3F2( dbe 1) 

(2.18) =de[(d +e-b-c)(d +e- l)-de+bc] 

+ (d - b)(d - c)(e - b)(e -c) 3F2 (d + , +1 

Notice that (2.18) is equivalent to (2.16) for k = 1 . 

Proof. Let the symbols Fde, Fa and F denote the three functions 3F2(1) 
occurring in (2.17). Further, let F+ := 3F2(a+ 1, b+ l, c+ 1; d+ 1, e+ 1; 1). 
The identities 

(d - a)(e - a)Fa = [(d - a)(e - a).- bc]F + (t - 1) F+, 
(t - 2)(d - 1)(e - 1)Fde = [(t - 2)(d - 1)(e - 1) + abc]F + z F+ 

can be obtained using Bailey's technique of [2]. Eliminating F+ from this 
system yields equation (2.17). 

Letting a = 1 in (2.17), which reduces the second function 3F2 to 1, and 
increasing d and e by 1, we obtain (2.18). 0 

Example 2.4. The lemniscate constant A is defined in [13, (14.3-7)] by the 
formula 

A := j1 - x4)-'/2 dx = E (+2n-)!! 
n=O (4n + 1)(2n)!! 

= ______ - 1.31102877714605990523 

(see also [1, 18.14.7], where this name is given to i := 2A). Also, we have 

(2.19) A = 2F, (4 5 2 |1) 3F2 (;4 5 2 |1) 

Convergence of this series may be speeded up using Theorem 2.2. As d - e = 
b - c, the recurrence formula (2.8) simplifies to 

k) =(ki) + 2n + 3k- 2 (k-1) 
n n ~ 4k -3 n 
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Moreover, 

As(k) [(4)k]2 (2)n 
n 

4(k +0ln(k +2 2(n + 4)k+1 

Transforming the series (1.3) into (1.4) for k = 1, 2, ... yields a two- 
dimensional table S of numbers s(k) ( k is a column index, n is a row index). 
The r th ( r > 0 ) antidiagonal of the table, formed by the entries Sn with 
n + k = r, depends only on the terms ao, a,, ... , ar of the series (1.3) (and 
on their asymptotic properties). The sum s may be approximated by the partial 
sums of a fixed series (1.4). It is also possible to use the values 50k), lying in the 
first row of S. However, there is a better way of using the table. Indeed, in case 
of the series (2.19) all the s(k) are less than its sum and such that s k) < S(k+l) 

and sn? < Sn(k) Therefore, an optimum sequence of approximations lies on a 
staircase path in S along which the approximations grow most quickly. More 
specifically, we take sn+1 as an approximation next to snk/ if 

(2.20) sn+(k) (k) > s(k+ 1) _k) (2.20) ~~~Sn,+1 -Sn Sn Snk 

and s(k+l) otherwise. Since 

n(k) - = k S (k) , (k+l) - 5(k) = 2n + 3(k + 1) -2A(k) n+1 ~~~~~~~~4(k +1) - 3 

the inequality (2.20) holds if and only if k > 2n. Thus we obtain the sequence 
(0) so 

S(0) S(1) S(2) 

S2 S2 S2 

S(4) S3 . 

Consequently, (2.19) implies the following series summing to A: 
00 

S(?) + (S(2n -2) S + (2n -21) (s2n-2)) + (Sn2n) -S(2n- 1))] 

n=1 

0(0 (2n-2)+ 8n -5 (2n-2) + 8n -) 

+ n2(+2An (+22D~ (Asn 
n=1 - 1 (n - + n 

[ (4)~42n-2(2)n-I 

34(2n - On-1 (2n - 23)2n-2(n - 3)2n- ] 

(43)2n-2(43)2n-1 (2)n 

2(2n- )n (2n-23 2n- 1 (n + 2n- 

+ ~~(43)2n-2(43)2n-1 (2)nl 

+3(8n - 3)(2n)n (2n - 2 )2n-2 (n + 4 )2n-l1 

It may seem that this series has a complicated form. Notice, however, that it 
can be written as 

00 

A = E(Pn + qn + rn)X 
n=1 
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where P1 1, and 

(2n -1)(4n - 3)(8n - 5) 
2(3n - 2)(8n - 7)(12n - 7) Pn X 

rn (2n - 1)(4n - 3) q 
n*3(3n- 1 )(8n -3)n 

8n - 1 
Pn+i := 

6(12n + 1) rn 

for n- 1, 2. Note that the quotients qn/Pn, rn/qn, Pn+l/rn tend to 
I when n x-+ c, so that adding a new term increases the number of correct 
decimal digits of the approximate sum by approximately log10 9 = 0.95. Also, 
it is possible to use the Stirling formula to obtain better estimations of terms 
(as in Example 2.7). 

The above series was summed in Turbo Pascal 5.0 on a microcomputer IBM 
PC in the extended arithmetic (precision of about 19 decimal digits). Using 
the terms up to q1, r1, P2, q2, r2, ... , r6 we obtained approximate values of 
A with 2. 1, 3. 1, 4.0, 5.1, 6. 1, 9.0, 12.0, 14.9, 17.9 correct digits, respec- 
tively. This agrees with theoretical estimations and shows that the sum may 
be computed to almost full machine precision. Notice that the regular analytic 
form of the series obtained enables one to accelerate its convergence, at least 
numerically. The same remark applies to other series obtained in this paper. 

In [13, ? 14.4], many numerical methods are used for accelerating the conver- 
gence of (2.19). The best result is obtained using Levin's u-transform, which 
for 11 terms of the series gives 11.3 digits of its sum. Other methods are 
much worse, being very sensitive to the influence of rounding errors, even in 
case where high-precision arithmetic (31-32 decimal digits) is used. We see that 
using analytic properties of an+l /an may increase the speed of convergence and 
enables us to control the precision of the result. O 

Example 2.5. If the hypergeometric series (2.6) does not satisfy the condition 
Id - el = lb - cI, then, according to (2.9), the factor /3kn + yk in the recurrence 
formula (2.8) depends on k in a more complex way than, e.g., in the preceding 
example. However, an optimum path in the table S may be found also in this 
case, which is-except perhaps for a finite initial segment-as regular as the 
one obtained for the lemniscate constant A. Such a situation is observed, e.g., 
for the Beta function defined by 

B(p, q) Xp= I X (I -X)q-l dx (R(p)) R(q) > 0). 

It is known (see [5, 8.380.1 and 8.384.1], [8, vol. 2, ? 13.6, (2)]) that 

B ie (p + q 2. the p + ( q) ma be compu ui the 

By virtue of Theorem 2.2, the value of B(p, q) may be computed using the 
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formulae 

(0) n j q(1j- 
Sn 

-ETj+P 

(k) _(k-1) + (2k + q - l)n + 3k2 + (p + 2q-4)k-q + l(k-1) 
(2k + q-2)2n 

(k = 1,2,...), 

A,(k)_ - 1-P)k(P+q)k(l-qX, 
(n+ P)k+1(k + q)k(k+1) (k=nO, 1,...). 

The optimum path is defined by the following rule: sn should be followed by 
S(k) if (k + q)2 - p(k + 1) > (2k + q + I)n, and by sk+l) otherwise. This path 
is very regular for small p, q . If, however, we take for instance p = 

3, q =.9 
it contains the approximants 

5(0) S(?) (1) ~s(2) 3, (2) ~s(3) gs 4) (4) -(5) (6) (6) (o rs(7)), 0 6( S4 S S4 4 S5, S5,s S6, S6, S6, S7 ?6 
(2n-7) (2n-6) (2n-() 

Sn n Sn n Sn (n , , 

The type of convergence of the final series is the same as in the preceding 
example. 0 

If the hypergeometric series (2.6) is such that d = b + 1, e = c + 1, then 
d - e = b - c, so that we can apply the last part of Theorem 2.2. Dividing the 
series by bc, we obtain the series 

00 

(2.21) (n + b)(n + c) (b, c $ O, -I, -2, ...). 

Certain mathematical constants as well as many elementary functions (tan, tanh, 
cot, coth, csc and csc2 [1, 4.3.91-93] and [5, ? 1.42]) and special functions 
(y (z), yi'(z), R J?y(iy) and a V(iy); see Example 2.9, or [1, ?? 6.3 and 6.4]) 
may be expressed in terms of such series. 

Corollary 2.6. The series (2.21) can be transformed according to the following 
formulae: 

n-l 
S(0) ._ 

n *- (j + b)(j + c) 

(2.22 Sn sf ) +n + 3k + b + c - 2 (k- 1) (2.22) S(k) S2k() +2 2!n+3+ b)cn sl) (k =, 2,...), 

n n 

2(2k - 1) 

(2.23) AS(k) - k! (b - c + k l)(C- b +0lk 
2k(2k -l)!! (n +b)k+l(n+ C)k+l 

where n = 0, 1, ...; this implies that As(k) O(n2k2) (n oo). 

A simplified version of equation (2.23) for b = c was obtained already by 
Knopp [7, (153)], who, however, did not exploit this result. 
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Example 2.7. Let us consider the series (2.21) for b = c = 1, i.e., 

(2.24) (n+ )2 6 

We should take 

stk) = 2k( )+2(2k )5 (k!)132 ..) 

(2k-1)![(n+ l)k+ (k=O, 1, . . . ) . 

The optimum path is defined in such a way that snk) is followed by Sn+1 

provided k > 2n + 1, and by Sn?+) otherwise: 
tO) (1) S(2) 

S6 S6 O 
S(2) S(3) S(4) 

1 1 1 
(4) S(5) S(6) 

S2 2 2 

Therefore, (2.24) implies the expansion 
00 

SO + , [(2n- )-S2n_-2)) + (s(2n) - s(2n- 1)) + (St2n) - S(2n))] 
n=1 

,(8n - 

52\,S(2n-2) + ,S(2n-1) +?&S(2n)) 
8n -6 n-I n-I n-I] 

n=1 

and, finally, we have 

I2 = , '( (8n - 5)[(2n - 2)!]3 
6 n1 V22n-i(4n - 3)!! [(n)2n- 1]2 

+ [(2n- 1)!]3 + [(2n)!]3 
22n-lI(4n -3)! [(n)2,] 22n(4n -1)!! [(n)2n'+l]2 

Let n be fixed. The first term of the expression in parentheses is asymptot- 
ically equal to (4V/2/27)7rv'77291-n/V/n, while the second term is asymptoti- 
cally 9 times less than the first one, and the third 9 times less than the second 
one. Thus, the series is similar to the one obtained in Example 2.4. It can be 
checked that restricting ourselves to the terms for n < 5, we obtain r2 with a 
relative precision of 14.8 decimal digits. Notice that the known series (see [7, 
(156)]) 

00 
n! 

n0 (n + l)n+2 

corresponds to the first row of the table S. It also converges qualitatively faster 
than the original series (each term is at least four times smaller than the pre- 
ceding one), but it is worse than the series obtained in this example. 0 

Example 2.8. The series 
00 

En(2n + 1)(2n + 2) g 
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differs by a constant factor from a series of the type (2.21). It follows from 
(2.22) and (2.23) that 

n-I 

n *-i(2j+ 1)(2j+ 2) 
J=0 

5(k) =(k-1) + 2 2k-17(kl) (k=I, 2,**), 

The best approximants from the antidiagonals of the table S are (,s(, 

(1) S (2) (3 (3) (4) I5 2Th. 

S1 ~ s 51 s 1s5 5 s. Th. e series 

1 2n-2 + 1+ 
16 1k16) \(2k-1) 4(4n + 1)2fl+2 4(4n + 4)2n+1 

n= 16-116+ 1 )1 

which has such partial sums, behaves similarly as the series obtained in the 
preceding example. In particular, the approximant s(? gives 15 significant 
decimal digits of log 2 . o 

Example 2.9. The function y(z) := (log F(z))' (called digamma) and its deriva- 
tive bet (known as trigamma) have the following expansions in the complex 
plane (see [4, vol. 1, ?1.7, (3) and ?1.9, (10)]): 

y(z)=y+(z- 1) (k + l)(k+ z)' 

00 1 

4nz)=(k )2 (z4O,-1,-2,.. ) 4 

n=0 

Notice that both series are of the form (2.21). Reasoning as above, we can show 
that for z E [1, 2) the optimum transformation gives 

_gz =- + E n! (z-2n - )3n+l 

r 8n+z+2 (8n+z+5)(2n+2-z) xl + 
t(2n + t)n+g(z + 2n)h+a 2(4n + 3)(2n + 2)n+s(z + 2n + l)c+l 

+ (2n -vz + 2)(2nd - z +13) ] 

2(4n +3)(2n?+3)"+1 (z +2n + 2)n+1 

00~~~~~~~0 
eg'() = ~ 22(zn + )! ( + (z)2 k+ 1(k]2z 

x{4n (2n+=) = E [(2n)!]3 

{ 2+ 2(4n +3)(3n +z +l)2 I4+Z2 if( +1 

respectively. In both cases, adding a new term, i.e., passing trough consecutive 
three elements of the table S, increases the number of correct decimal digits 
of the sum by log10 729 = 2.86 at least. This remains true for real and even 
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complex z lying outside the interval [1, 2), though the optimum path may 
depend on z. o 

Example 2.10. In (2.22), (2.23), parameters b, c may have complex values. If, 
in particular, they are complex conjugate numbers, then the resulting formulae 
contain real quantities only. Let b = i, c = -i, which corresponds to the 
series E l/(n2 + 1) summing to 2(7 1) ) + /(e27 - 1) = 2.076674047468581 
[1, 6.3.13]. Then 

s(k) s(k-1) + 2n + 3k- 2(k- 1) (k = 1, 2, ***), 
2(2k.-i1) 

_k k!flk1(1+ 4)k- 1 
2k(2k - 1)!! H1j=n(j2 + 1) 

(0) (0) (1) (1) (2) (3) (3) The optimum sequence of approximants s4), s) 5I S2), S2), S2 S3 

S(4), S), .. . is convergent to the sum of the series as quickly as in the previous 
examples. In particular, 414) gives the result 2.07667404746858117, which has 
at least 16 correct digits. 0 

Proceeding in an analogous way, one can obtain new expansions of coth x, 
!y,(l + ix) and some other functions, as, for instance, we have [1, 6.3.13] 

1 1 ~~~~~00 1 
Q 1/( + ix) =- -IrcothIX = XZ 2 

= 2x + +2 
n=l 

Let us go back to the general case of series of 3F2( 1, b, c; d; e; 1) discussed 
in Theorem 2.2. It can be deduced from the forms obtained for f8k, Yk that 
the optimum path in the table S contains, putting aside a finite initial segment, 
the entries 

(2n+m) (2n+m+l) (2n+m+2) ( m 1 ) Sn ' Sn ASn (n nmin, nmin +,*-* 

where m, nmin are integers depending on b, c, d, e. This implies that the 
sum of the above series can be expressed as a finite sum corresponding to the 
initial segment of the path plus the sum of the following three series: 

00- 

Z (f2n+m+1n + Y2n+m+i)As +2n+m) 
n=nmin 

00 00 

(f12n+m+2n + y2n+m+2)A ,7n+m+l), ) E 2n+m+2) 
n=nmin n=nmin 

It can be checked that the first two series are of the type 13Fl2( 10, ... ... ; 
and the last is of the type IIF0o(l , . .. ...; 7 ). The parameters of these 
new series depend on b, c, d, e, m. In particular, if Id - el 54 lb - cl, then 
as a rule, two numerator parameters and two denominator parameters of 13Fl2 
are nonrational functions of b, c, d, e, m. Obviously, the new series can 
be simplified considerably in particular cases. In general, however, the theorem 
relates 3F2( 1, b, c; d, e; 1) to the abovementioned more complex series which 
are faster convergent. 
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Concluding the considerations related to the transformation (2.4), we recall 
that its parameters fl, y are determined using the asymptotic expansion of 
the quotient n/Asn0) - an+ /an. These parameters may also be determined 
numerically so that three consecutive elements sn ) S I )2 ( n fixed) of the n+1 n+2 

sequence Is(') are identical (and equal to an approximation s of the exact 
sum s). We then have 

fi+Y= A (j= n, n + 1, n + 2). 
&(0) 

Hence, 

(0) ) =0 

Obviously, s depends on n, in general; thus we obtain the following transfor- 
mation of the sequence {S }: 

Sn I' sn) /A( 1Sn \ 

It is easy to verify the following: 
(i) The above formula is identical to the first step of Brezinski's 0-algorithm 

(see, e.g., [3, ? 2.9] and [13, (10.3-3)]), more specifically, to passing from the 
sequence {0(n)}, identical to IS(0}, to { }n)} . Also, notice that the method 
defined by this formula is equivalent to the Lubkin W-method [13, ? 10.3]. 

(ii) For some series, {19nl)} is identical to {sM1 }. Such a situation occurs 
in the case (2.19), where A2(1//S(O)) = 2 for n > 0. In general, however, our 
analytic transformations differ from the 0-transform (as well as from other 
known numerical transforms). 

3. SERIES FOR E =-1 

In this section we consider series of the form 
00 

(3.1) j(-I)n an- 
n=O 

We assume that the an satisfy condition (1.8). Also in this case accelerating 
factors Cnk) can be found which produce some new methods for convergence 
acceleration. The point of departure is, as in ?2, equation (1.7), satisfied by 
the exact factor CQ0) , defined by (1.6). Applying Theorem 6.1 of [11] (see also 
[12, Theorem 2.1]), we obtain an expansion of this factor into a formal series 
co + c1n- + c2n-2 + ,where c0=. Having computed Ck, we can replace 
the exact Cd0) by, e.g., [m / m](n-'), where [m / m] is a Pade approximant to 
the formal power series c0 + cIx + C2X2 + . 

In the simplest case, the exact factor Cd?) is replaced by the number 2 n ~~~~~~~~~~2 
(i.e., the Pade approximant [0 / 0] ). This transformation, defined by sn : 

Sn+ 2 n is a typical step of the well-known Euler's transformation. More 
useful is the following transformation, which is based on the use of [1 / 1]. 
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Lemma 3.1. Let s(?) be the partial sum of the series (3.1), 

n-I 

Sn? := E(- l)Iaj 
j=0 

and let 

- s~~~~( ) = (0) n + () 

where 
_ 1 P2 4' = - _ 1 _ P (providedpi$O), r= 2C + p. 2 Pi 

Then we have As(') = -Asn(O(n -3). 

Proof. In view of (1.8), we have 

41) (-I )n+lan [( )2n + n/( -)-n-Q+C ASn 2 = ( a [(n+C+ 1) p (+ -in- )-n- +j 

where P,I Pi - 1, P2 P2 - PI. + I + 1 . The expression in brackets can be 
expanded into a series with respect to the powers of n-I . For C , t1 given in 
Lemma 3.1 the coefficients of no and n-I vanish, hence the result. O 

Remark. Recall that in ?2, when e = 1, we obtained the formula As(') ) 

As()O(n-2) (see Lemma 2.1). Thus, it might be thought that we obtain here a 
stronger acceleration effect. This is, however, not confirmed in the case when 
we choose an optimum sequence of approximations. 

The next examples show that the parameters ; and 11 can be computed effec- 
tively also for the further transformations of series, provided the way in which 
an depends on n is sufficiently simple. The most general hypergeometric series 
to which we are able to apply the proposed method is 3F2(1, b, c; d, e; -1), 
where b + d = c + e. Obviously, formula (3.4), given in the theorem below, is 
a consequence of Lemma 3.1. 

Theorem 3.2. The series 

(3.2) 
3F 

, e 
I E(I 

)() 
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may be transformed using the following formulae: 

( 3. 3) s(? = _ (b) j(c) j 
1=0 

(3.4) 5(k) 5(k-1) + 2(2 b+d 5) (k-1) (k= 1 2 ...) n n ~ 2n+k+b+d-2 n 

(35 n5k =(1)+ (n + I (k + b + d - 1)) 
(d- C)k ((e - c + 1))k(2(d - b + 1))k(b)n(c)n 

x 

(e)n+k(d)n+k(n + 1(b + d -))k+1 

(k=O, 1,...). 

Here n = 0, 1,. 
Proof. If k = 0, then (3.5) agrees with (3.3). In case k > 0, it is sufficient to 
show that (3.5) satisfies the identity 

n+2k+ (2e-bd-,3)n-k+ (2b-e+c+1)A,k1 AS (k) = k+2 (k2 bb dd 3 -Sn 1) +n 2k ++AS b+d- '(k+ 1)' 
n(k n 2nk+ +2eb-d-3)snk1 + 2n?k+b+d-2 n 

which follows from (3.4). c 

Remark 1. If b +d - 1 = -2m ( m = 0, 1, ... ), then the denominator of (3.5) 
contains (n - m)k+l , which vanishes for n E {m, m - 1, ... , max(O, m - k)}. 
Thus the formula can be applied for n > m only. The same remark applies to 
(3.4). 

Remark 2. The recurrence relations given in Theorem 3.2 imply the following 
identity: 

F4 (k+e- 1, b,c, '(b+d-1), l(k+b+d) 
54 Vk +e- I1, k +d -1, k + I(b +d - 1), (k +b +d) - I 

_2k + 1(3e+d-5) 

k + b + d - 2 
(k + e - b - 1)(k + b + d - 1)(k + 1(e - c - 1))(k + I(d - b - 1)) 2~ ~ 2 

(k +e - 1)(k +d - 1)(k +b +d - 2)(k + I (b +d - 1)) 

xF(k+e1b, bc, 2(b+d-1) 2(k+b+d+1) 
4k+e,k+d, k+ '(b+d+ 1), I(k+b+d-1) - J)- 

A regular part of the optimum path in the table S, corresponding to the 
function 3F2 (1, b, c; d, e; -1), contains only the elements 

Sn S5Sn (n = nmin, nmin+I,.**), 

where m, nmin depend on b, c, d, e. Thus, the sum of the above series can 
be written as a finite sum, corresponding to the irregular (initial) part of the 
path, plus 

00 00 

Z (/Jn+m+in + Yn+m+i)ASn+m) + z AS(n+m+l) 
n=n__i. n=nmin 
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Note that both series are of the type 8F7(1, ... ... ). 

Remark 3. If the condition R(d - c) > I is relaxed, the series (3.2) is divergent. 
However, if d - c, I (e - c + 1), or 2 (d - b + 1) is a nonnegative integer, then 

equations (3.4) and (3.5) still hold, and As(k) vanishes for sufficiently large 
values of k. Hence, the analytic transformation of the series (3.2) according 
to Theorem 3.2 may be viewed as a summation method for a divergent series. 

Example 3.3. Theorem 3.2 is directly applicable to the series expansion of 

(Z) +y =2(z 1) 3 F2 I2 1 + z 

(see [10]). For the expansion of the right-hand side of the above equation, we 
have 

(k) (k-i) f+ 2k+z- 1 4k1) Sn :s~ + 2n+k+l 

^ (k) - (1I)k(2n + k + 2)k!(z-n l)n+k+z 
n - -(z + k)n+1[(n + l)k+1 ]2 

Let us assume that, for example, z E (1, 2) . Then, given arbitrary k, n > 0, 
the approximants s(k) and s k+l) lie on the opposite sides of the sum; the 
same property holds for the numbers s k) and snk+) which means that the 
manner, in ?2, for choosing the best approximants from the antidiagonals of 

(k+ 1) (k) I<S(k) _(k) , >U1 table S should be reversed here: if jsn,+ )Sn ) < Snp+l -sn j,i.e., n>k+I 

then sn? is followed by 41k+1), otherwise by s(k) This defines the best path: n ~~~~~n+1 
(O0) S() ? 5(1) . and the transformed form of y(z): 

00 

y,/ + ](w Y = ([S+-n )) + (s (n+ 1)-S(n) ) 

n=O 
00 ~~~~~~~~~00 

Z^5n) +3n + z + 2 a(+l)=#P-n )Zn (p- -qn), 
n=O n=3 

where po := 2(z - 1)/z, and 

(n-z+2)(3n+z+2) 

qn 4(3n + 2)(2n + z + 1) 

Pn+1 I= (n )(3n+5)(n+z)2 (n=0, 1, ...). 

The speed of convergence of this series results from the obvious relations qn /Pn 

8 Pn+i /qn I l . Thus, adding a new term to the series increases the number 
of exact digits of the result by approximately loglo 8 = 0.9. If, for example, 
z = 4, then the terms up to p4 give the approximate value 0.34976213, where 
all the digits are correct. More precise asymptotic expressions for Pn, qn can 
also be obtained. It is worthwhile to compare the above series with the results 
from Example 2.9. o 

It is obvious that any series 2F1 (1, b; d; -1) may be written in the form 
(3.2) with c = e. Thus, a simple consequence of the Theorem 3.2 is 
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Corollary 3.4. The series 
(3.6) 

2FI (~ lb |'_1)=O (_ I)n (b)n (d 54 O, -1,~-2.. ., R(d -b) > 1) d 
l= (d)n 

may be transformed using for n = 0, 1, ... the formulae 

n_ (-I ) (b)j 
S(0) 

__ 

n o (d) ' 

(3.7) s(k) :=s(k- d)+ 2 +k+d (1) (k 1, 2,...), 

(3.8) ,~(k)- ()n+k( ')k(2n + k + b + d - 1)(d - b)2k(b)nl 
(d)n+k(2n + b + d - 1)2k+1 

(k=O, 1,...). 

Remark 1. If d - b is a negative integer, the series (3.6) diverges. However, 

55(k) defined by equation (3.8) vanishes for sufficiently large k, if d - b is 
a negative integer. Thus, the transformation of the series (3.6) according to 
Corollary 3.4 is a summation method for a divergent hypergeometric series. 

Remark 2. It is interesting that, given b, d, equation (3.7) may serve to acceler- 
ate the convergence of unique hypergeometric series, different from 
2FI(1, b; d; -1), namely, 2FI(b + d - 1, I(b - d) + 1; I(b + 3d) - 1; -1). 
Note, however, that the sum of the latter series can be expressed in terms of the 
Gamma function [4, vol. 1, ? 2.8, (47)]. 

Remark 3. Under the assumption that d > b > 0, we obtain the same optimum 
path as in Example 3.3. 

Example 3.5. Corollary 3.4 enables us to obtain a rapidly convergent expansion 
for VI. It is known that 

v U ~ i= Fo 2 X I) =1+ x2Fi( 2 X) 

Now, we can set for x = 1 
(O) n-i ( _ 1 )1' l(2j 2-3) ! ! 
n *- j=l (2])!! n 

j=1 ~ n= 

Now, weca set- fo x = I s k=1 ,***) 

n ~~~(2nj) k+! 2n+2k! 

The optIm sqnce1k f ar m (2)us ec 2ko aa)io (f 2 i 
- 

O, 1) 1) 

The optimum sequence of approximations of X2 is: Si?) s2) s2l) Si ) 
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S(2).... Thus, we obtain the expansion 
3, 

s/2 - + 2 (2n - 3)!! (4n - 3)!! 12 _ 6n - I V2- I + 2 ( 126n- 
n=1 32n(n-1)! (2n-2)2n-I n(2n + 4)232 / 

where each term corresponds to a shift in the table S by two entries, i.e., to 
two terms of the original series. An asymptotic expression may be found for 
this term, like in the next example. Let us limit ourselves to the remark that the 
nth term is a difference of two numbers, gn and hn, say, such that the quo- 
tients gn/hn and hn/gn-I are both asymptotically equal to 8. Thus, adding a 
new term to the series increases the number of correct digits of the result ap- 
proximately by log1o 64 = 1.8. This is confirmed by computations performed 
for n < 1, 2, 3, 4, as we obtain 2.6, 4.5, 6.4, 8.3 decimal digits, respec- 
tively. 0 

Example 3.6. Assume now that d = b + 1, which gives the series 

(3.9) E 
n 

0 n+b 

having the sum 2 [( (b + 1)) - ( Gb) G (b) [4, vol. 1, ?1.8]. Notice 
that (3.6) reduces in this case to a series which is equal to (3.9) multiplied by 
b. Using the formula (3.8), we should, therefore, divide its right-hand side by 
b. In particular, for b = I (the sum of (3.9) is then 7//X + log 2; see [5, 
0.239.1]) and b = a (the sum is i/2; [5, 0.232.2]) this gives the sequence 

sO0), s(1), s 2 ... corresponding to the series 

n=l n=0 ( 3n + d - 
3 

Z[(s(n-1) - +(-1 Sn - s(n-1)) =Z((n-1)+3+ 2d- fl-) 

For b I , this implies the expansion 

(3.10) ir = 
n- [(R 1)]2 3n2 3n2 

n=1 - [(n - 1 )]2(n)n-1 [(n + I) ]2(n + l)n- 

Its first three terms give 3.1415878... , which is a value of X correct to 5.8 
decimal digits. 

In case b = 2 (sum of (3.9) is 7r/ V - log 2; see [5,0.239.2]) and for b = 1 
(the sum is log2) the optimum sequence is s6 So) si) S(2) . Hence, 
we obtain the series 

(nn)- n-I ) + (sn n)-sn)] =E 3n+2d_-3 \n-I )/\n-)l 
n=1 n=1 

For b = 1 this gives the expansion 

lo2= 
M 

[(2n -2)!I2 (i-2n -1) log2 = 3E 4n(4n )3)!(4(4n - 1) n=1 
It can be verified that the nth term of the last series is asymptotically equal 
to I v12'641-n/v (this applies also to the series (3.10)). In particular, the 
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approximant s(8) gives 14.2 decimal digits of log2. Note that this result is 
much better than the one obtained in ?2. Indeed, the series, which has been 
transformed there, is obtained by summing pairs of subsequent terms of (3.9); 
to obtain 15 correct digits, we needed about 30 terms of (3.9). o 

Let us consider the series 

(3.11) (n+b)(n +cj) =bc3F2 (b+1,c+l 1 ) 

(b, c5#0,-l,-2,...). 

Notice that the above 3F2 is of the form (3.2) with d = c + 1, e = b + 1. 
Thus, we obtain the following. 

Corollary 3.7. The series (3.1 1) may be transformed using 

s(s) 
+_ 

2+k+b+ n (j Jr b)(j +c) 
j=O 

Sn := Sn ) + 2 k + (b + c) 
- 

I(-) ( 

~(k) 
- (_l)n+kk! [n + (k + b + c)] [(b - c) + l]k-[(c b)+ l]k 

[n + l(b + c)]k+l(n + b)k+l(n + C)k+l 

(k=0, ,...) 

for n = 0, 1, . If b = c, the last formula simplifies to 

A,(k) - (-l)n+k(n + Ik + b) ( k! )3 

For b1 # c the series (3.11) can be written as a combination of series from 
Example 3.6, i.e., in terms of the V, function. If b = c, its sum is 1 

[IV'(Ib) - 

V' ( (b+ 1))]; note that a series expansion for vI' has been obtained in Example 
2.9. However, it may be inferred that the optimum (in the sense defined) con- 
vergence acceleration of the series (3.1 1) would give simpler and better results 
than using the same procedure for each of the two series separately. Indeed, 
this is the case. 

Example 3.8. If b = c = l, the series (3.11) has the sum -1 r2 . The optimum 
sequence ? O), SI 1) 41) ... of approximants yields the series 

00 

n-l 

n 1) n l((n 1)! \3((nnl)- 

n= 1 I (1 - )(~n ))3 n 3 

n=i 
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The nth term of the last series is asymptotically equal to 217V/64-n/Vl, 
i.e., the convergence acceleration has the same character as in the preceding 
example. 

If b = c 2'the series (3.11) has the sum 4 G, where G is the so-called 
Catalan's constant, approximately equal to 0.915965594177219015 (see, e.g., 
[8, vol. 2, p.293]). Proceeding as before, we obtain the expansion 

10 r /n 3( (n-i)!\3 G=1- E 3n-2- 8(3n +1)( )]( l!. 
n=2 

As before, adding one term to a partial sum of this expansion, i.e., adding two 
terms of the original series, increases the accuracy of the result by log1o 64 = 1.8 
decimal digits at least. 

The parameters b, c may have complex values. In case of Z(-l)n/ 
(n2+n+ 1) we have b+c = bc = 1, hence 

5(k) := 5(k-1) +k2 AS(k k -11, ).) 
n I2 k-! 

'ASk) I)+k!2n+k4 
n (k) ( 1)n+k(+(k+1)) h(h2 +3) 

(k=O, 1, ...). 
(n + ')k+1 ln%k (h2 +h + 1) 

The optimum sequence sO), (), (1), 21) ... converges to the sum 

0.761310204001103486 
as quickly as in the other cases. In particular, s(8) has 14 correct decimal 8 
digits. 0 
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